Methodological Issues in Evaluating Machine Learning Models for EEG Seizure Prediction: Good Cross-Validation Accuracy Does Not Guarantee Generalization to New Patients

نویسندگان

چکیده

There is an increasing interest in applying artificial intelligence techniques to forecast epileptic seizures. In particular, machine learning algorithms could extract nonlinear statistical regularities from electroencephalographic (EEG) time series that can anticipate abnormal brain activity. The recent literature reports promising results seizure detection and prediction tasks using deep methods. However, performance evaluation often based on questionable randomized cross-validation schemes, which introduce correlated signals (e.g., EEG data recorded the same patient during nearby periods of day) into partitioning training test sets. present study demonstrates use more stringent strategies, such as those leave-one-patient-out partitioning, leads a drop accuracy about 80% 50% for standard eXtreme Gradient Boosting (XGBoost) classifier two different Our findings suggest definition rigorous protocols crucial ensure generalizability predictive models before proceeding clinical trials.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

a new approach to credibility premium for zero-inflated poisson models for panel data

هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...

15 صفحه اول

Futility Analysis in the Cross-Validation of Machine Learning Models

Many machine learning models have important structural tuning parameters that cannot be directly estimated from the data. The common tactic for setting these parameters is to use resampling methods, such as cross–validation or the bootstrap, to evaluate a candidate set of values and choose the best based on some pre–defined criterion. Unfortunately, this process can be time consuming. However, ...

متن کامل

Evaluating machine learning models for engineering problems

The use of machine learning (ML), and in particular, artiicial neural networks (ANN), in engineering applications has increased dramatically over the last years. However, by and large, the development of such applications or their report lack proper evaluation. Deecient evaluation practice was observed in the general neural networks community and again in engineering applications through a surv...

متن کامل

Increasing The Number of Embryos Transferred from Two to Three, Does not Increase Pregnancy Rates in Good Prognosis Patients

Background To compare the pregnancy outcomes after two embryos versus three embryos transfers (ETs) in women undergoing in vitro fertilization (IVF)/intracytoplasmic sperm injection (ICSI) cycles. MaterialsAndMethods This retrospective study was performed on three hundred eighty seven women with primary infertility and with at least one fresh embryo in good quality in order to transfer at each ...

متن کامل

Feature preprocessing improves Support Vector Machine accuracy for seizure detection in neonatal EEG

On Neonatal Intensive Care Units (NICU) many vital parameters are recorded but monitoring of brain function by Electroencephalography (EEG) is rare, mainly because signal interpretation requires expert visual inspection. In 1-6 % of newborns on the NICU (sub clinical) seizures occur and even more frequent in prematures and lowbirth weight children [1]. Failure of detection and subsequent lack o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied sciences

سال: 2023

ISSN: ['2076-3417']

DOI: https://doi.org/10.3390/app13074262